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ABSTRACT

An expression is derived which relates the distribution of vibration-
al levels near the dissociation limit D of a given diatomic species to the
nature of the long-range interatomic potential in the region where the
latter may be approximated by D - Cn/R.na Fitting experimental energies
directly to this relationship yields wvalues of D, n, and Cno This proce-
dure requires a knowledge of the relative energies and relative vibra-
tional numbering for at least foururotationless levels lying near the dis-
sociation limit; however, it requires no information on the rotational
constants, or on the number and energies of the deeply bound levels.
D can be evaluated with a much smaller uncertainty than heretofore ob-
tainable from Birge-Sponer extrapolations. The formula predicts the
energies of all vibrational levels lying above the highest one measured,
with uncertainties no larger than that of the binding energy of the
highest level. The validity of the method is tested with model poten-
tials and its usefulness is demonstrated by application to the precise

data of Douglas, Mg¢ller, and Stoicheff for the BsHOZ state of Cl2°
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I. Introduction

For more than four decades the Birge-Sponer?

extrapolation procedure
has been employed, with only minor modifications,?’?® for the determina-
tion of values for dissociation limits of diatomic molecules from experi-~
mental vibrational spacings AGv_l_l/z.,"+ One of the great virtues of this

method is its simplicity, as exemplified by the exact linear relationship

between AGV+& and v for a Morse potential. In this case, AG(V) 5
2

extrapolates to zero at vy = (Zwe# - %), where vy is the non-integer
"effective' vibrational index of ihz dissociation limit.* For more re-
alistic potentials it is well known that the Birge-Sponer (B-S) plot
shows positive curvature in the region just prior to dissociation, due to
the dominating influence of the long-range '"tail" of the interatomic po-
tential.? *’%® CGraphical extrapolation to the dissociation limit is
therefore less reliable, and uncertainties greater than *10 cm_l are
common in values so obtained for the dissociation limit D .

The WKB~based method to be described takes advantage of the domina-
ting influence of the long-range portion of the potential on the ﬁpper—
most vibrational levels. It requires only the energies and relative
vibrational numbering of four or more rotationless levels lying close to
the dissociation limit D (ie.,less than ca. 10% of the well depth
below D ). These are fitted to an analytical approximation formula,
yielding 'best' estimates of D and of the long-range interatomic po-
tential. Although a proper RKR analysis yields a much more accurate
estimate of the potential,7 it is much more restrictive than the present
method since it requires as additional information the absolute vibra-

tional numbering, and the energies and Bv constants of all levels

below the one whose turning points are being calculated. Furthermore,
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the RKR approach provides no estimate of D or of the energies or even of
the total number of vibrational levels above the highest one observed,

and offers no direct means of extrapolating beyond the observed levels.

IT, Method

A. Derivation and Special Cases

The starting point of the present treatment is the first-order WKB

quantum condition for the eigenvalues of a potential V(R)

RZ(V)
vHs = 41;"’;2:% S[E(v) - V(R)]l/z dr (1)
Rl(V)

where E(v) dis the energy of level v , and Rl(v) and RZ(V) are its
classical turning points: E(v) = V(Rl(v)) = V(Rz(v)), Although the
allowed eigenvalues correspond to integer v , it is convenient to treat
v as a continuous variable.

Differentiation of Eq. (1) with respeet to E(v) vyields

RZ(V)

dv_ 1 U _ -

- L »\F; S[ﬁxv) Y] ar (2)
Rl(V)

since the derivatives of the integral limits are zero. Consideration

of the nature of the integrand in Eq. (2) suggests that the integral will
be very nearly unchanged if the exact V(R) is replaced by an approxi-
mate function which is accurate near the outer turning point Rz(v),

This is illustrated in Fig. 1 for the case of amodel potential, chosen

to be of the Lennard-Jones(12,6) form.® Using the asymptotic approxima-

tion for V(R) :



V(R) = D - cn/R1rl (3a)

where D is the dissociation limit of the potential, Cn is given by

E(v) = D - cn/fxz o (3b)

Changing the variable of integration to v RZ(V)/R, Eq. (2) becomes

¥ R /Rl
4 -%

C
v = ._l..-_. H n ""2 n—
dE(v) Tk Q2 [b—E(v) T Un y “(y -1) ? dy

In the 1limit Rl(v) >0 (igf,Rz(v)/Rl(v) -+ ) this integral is well

known.? This yields an approximate analytical expression for é%ézl

near the dissociation limit:

av T Cot i)

),
dEC)_ ¢ ﬁ—f LAt o - @] ™ =k prw] ™ @
C
n

where Kn is an obvious collection of constants and T(x) is the gamma

dE (v)
dv

Birge-Sponer ordinate;® c.g.s. units are implied through-

10 Note that

function. is closely related to the conventional
out.

Eq. (4) shows that for the uppermost vibrational levels of a given
diatomic species, the spacings depend only upon the long range potential
parameters D, n and Cn . Thus, for electronic states with the
same long range potential, B-S plots for levels near D will be precisely

superimposable wupon shifting of their abscissa (v) scales. This result

is discussed further in Appendix A.



For sets of vibrational levels which can be described by Eq. (4),

the curvature of the B-S plot must be positive, since®

A®E(v) nt2 _ 3 -4
T = K b-zwm
, (5)
av? 2 dv*®

For n = 6 this curvature is a constant; for n > 6 it increases with

increasing v , becoming infinite at the dissociation limit; for n < 6

it decreases to zero at D . Positive curvature of a B-S plot for a set

of experimental vibrational energies is therefore a necessary (though

not sufficient) condition for the applicability of the present method.
In practical applications it is most convenient to employ the

integrated form of Eq. (4),!! which for n # 2 is

D - E(v) !:Kn(zn)(vD vﬂ ©

. 13
where, in general, v 125

D is an integration constant.

For n> 2, vy
takes on physical significance as the effective (non-integer) vibrational
index at the dissociation limit, provided that the potential is well ap-

proximated by Eq. (3) from the highest observed levels up to D . In this

case, truncation of v to an integer yields the vibrational index of the up-

D

permost rotationless level, say N It is interesting to note that the

D’
"natural' dependent and independent variables in Eq. (6) are respectively

the binding energy D-E(v), and the vibrational "index" counted down from

D (for n > 2). Applications of the present method are based upon the



fitting of experimental energies E(v) to Eq. (6) to yield values of
the four quantities D, n, Cn and Ve This is discussed further in
Sec. IIC and III.

While the potentials considered above (n > 2) are of most practical
interest, results for n < 2 will be noted. Here the integratioh con~-
stant 5 must be smaller than any of the v wvalues of the levels

being fitted (and may even be nagative), since Kn ig positive and

(n-2) is negative (see Eq. (6)). For =n =1, Eq. (6) becomes

c 2
u 1
S Lt
which is the exact quantum result #f one sets v = -1.'% For n =2,

integration of Eq. (4) yields

D - EW = [ - E(0)] exp[—-ﬂh v ﬁfﬁ—z—z— ] )

Here the assignment of any given level as v = 0 is arbitrary since
the levels cannot be enumerated either down from D or up from a
lowest level.'® Eq. (7) is identical to the exact quantal result'®

except that it omits the (usually small) effect on the apparent C2
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constant of the Langer correction to the WKB integral, Eq. (1).

The present approach can also be applied to potentials whose long-
range tails are not of the inverse power form. For example, consider any
potential with an attractive exponential tail,!” such that at large R:
VR) =D - Ae_BR. Applying the same approximations (replacing the full

potential in Eq. (2) by its tail, and letting R, = 0), an expression

1

analogous to Eq. (4) is obtained:



__diév) =’\f§’f’1‘6 [D - E(v)‘]l/z/[l - }2-{ sin—l '\f—————D_iCV) ] (8)

As with Eq. (4), in this case the vibrational spacings near D depend only

on the potential parameters (here D, B, and A) and to a first approxima-
tion (ignoring the arcsin term) they are independent of A. Integration

of this expression yields

-

/”D—E(v) 2 . -1 , D-E(v){, 2 . _ D-E(w)|_ 4B _
B [1. - sin ——Ef-i}+ - {; 1 e yfﬁz'(vD v)

where the integration constant vy has the same physical significance

as in the inverse power (n > 2) case. Upon expanding the left hand side

. . D-E(v . . .
as a power series in f————= , reversion of the series yields

2n2
D-E(v) = hzi

(VD—V)2 1+ (vD—v) Y +% (VD_V)Z v2 4+ ] (9)

\

where

- a2 88
Y_ﬁ = (10)

As with the inverse power potential, the B-S plot will show positive
curvature; however here the curvature is quite small and to first order
(setting Y=0) it is zero.'®

This result (Eq. (9)) for potentials with an exponential tail is
particularly useful since it allows a test of the approximations under-

lying the present treatment. One may compare Eq. (9) with the exact quan-—

tal results for one realistic model potential with an exponential tail,



, -8 <R—Re>] 2
the Morse potential:*? VM(R) = De [1 - e , whose eigenvalues
are given by'’**

h2g? 2 _ 2
D-E(v) = (VD—V) = wexe(vD-v) (11)
2y
where V5 is, as before, the effective vibrational index at D . Clearly

in the limit Y - 0, the distribution of vibrational levels predicted
by‘Eq. (11) agrees with that of Eq. (9). This is true despite the change

in Vi which merely amounts to a change in vibrational numbering and a

small shift in the eigenvalues (arising from the small change in VD—ND);

in effect this change in v, merely shifts the abscissa scale in the

D
B-S plot. The influence of the short-range portion of the Morse poten-

tial is thus merely to remove the small "

correction' terms in (vD—v)Y
from Eq. (9), yielding Eq. (11). The value of Y depends on both B
and the coefficient of the long range (attractive) exponential term in
VM(R), 2DeeBRe; substituting this for A in Eq. (10) and using known

relations among the Morse parameters“ one identifies

Y = — e (12)

which shows that for typical diatomics Y << 1.

B. Significance of Parameters and Sources of Error

Perturbation theory suggests20 that near the dissociation limit the
internuclear interaction may be expressed as a sum of inverse (integer)

power terms in R



VR) =D - gcm/Rm (13)

“Over any small interval, Eq. (3) is a close approximation to Eq. (13),

if one considers n to be an "effective" or "local" power which cor-

responds to a weighted average of the different wm values:?!

. L@ ¢ fk, o
% m Cm/@z (vgnﬂ-l

In the limit v - Vs as R2(v) reaches the asymptotic region, the

- 1 (14)

effective non-integer power n =+ n, the (integer) smallest power con-
tribution to Eq. (13). As long as the potential for the state in ques-
tion is well behaved,?? fits of Eq. (6) to different subsets of a given
energy spectrum should all yield essentially the same value of D ,
though the "local" values of n, Cn and v_ differ slightly.

D

At somewhat shorter separations, exponential-type exchange forces

replace the inverse-power terms in dominating the interaction;:zo thus,

®  How-

the B-S plot becomes increasingly linear for the deeper levels.'®
~ever, the approximations of the present treatment are worse for these
more deeply bound levels, so only the region dominated by the long-range
inverse-power terms (positive curvature of the B-S plot) should be
treated by the present method.

There are two main sources of error inherent in the approximations
represented by Eq. (3). First and most obvious is the neglect of the
singularity at Rl(v) in the exact integrand of Eq. (2) (see Fig. 1).

This omission tends to make the estimate of the integral used to obtain

Eq. (4) somewhat small, and since the relative magnitude of this error



decreases for the higher levels, the effect will be to yield values of
both n and Cn which are somewhat too large.

The second source of error arises from the fact that a realistic
long-range interatomic potential is a sum of attractive inverse-power
terms (see Eq. (13)) in contrast to the single attractive term in the
model L.J.(12,6) potential. This means that whatever the effective
inverse—power precisely at a given RQ(V) (from Eq. (14)), terms with
- .higher powers contribute relatively more to the potential for R < Rz(v),
so that the exact integrand of Eq. (2) is smaller than that for the
single Cn/Rn function which best fits the potential at Rz(v). This
error has the opposite effect of the first, tendiné to produce values
of n and Cn which are slightly too small. The former error is most
_serious for the deeper levels, while the latter dominates the situation
as n (see Eq. (14)) approaches its asymptotic value n .23

A third potential source of error arises from use of the first~
order WKB approximation (given by Eq. (1)), compounded by the omission

of the Langer correction.*®

However the effect of this approximation.
is expected to be negligible.zq

Values of D, n and Cn obtained on fitting any given set of vib~
rational energies to Eq. (6) yield a '"local" estimate of the potential
in the form of Eq. (3). Because of the errors described above, this
estimate of the potential will be somewhat too deep when using data for
the deeper levels, and slightly too shallow when considering only the
highest levels. This is illustrated by the examples considered in
Sec. III.

Next in importance to D are the power n and coefficient C~ of

the longest range (lowest power) term in the expansion for the potential
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(see Eq. (13)). The errors in n (see above) which induce slight
errors in D , may also weaken the accuracy of n . However, for many
electronic states n 1is known from theoretical considerations;25
the only question:is whether the levels being fitted lie close enough

to the dissociation limit D to be governed mainly by the asymptotic

~

R term of the potential. If this is so, it is desirable to constrain
n to be equal to n and employ a three parameter fit to Eq. (6) (or

if n =2, a two parameter fit to Eq. (7)). This should yield improved
accuracy in D and provide significant values of the theoretically
interesting Cﬁ and v_.

D

C. Implementation

In this section, a procedure is described for the practical applica-
tion of the present method to experimental data in a manner intended to
yield the best possible estimates of the parameters D, n, Cn and (for
n# 2) Ve The general case of n # 2 will be considered first,
followed by a brief discussion of the situation for n = 2.

A least-squares fit of experimental energies directly to Eq. (6)
is the most general way of obtaining the best values of the four quan-
tities?$ However, since this expression is non-linear in the parameters,
the general regression problem may have no unique solution since the sum
of squares may show local minima which do not correspond to the
best parameter values, This problem can be avoided if the initial
trial parameter values required by non-linear regression procedures are
sufficiently accurate. Thg necessary trial values for n and vy may be

obtained from a fit to a linear expression obtained on combining

P
/
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derivatives from Eq. (6):27

E'W/E' W) = - &) (v-v) (15)

Holding fixed the n and vy values thus obtained, Eq.2(6) becomes
n
linear in a new independent variable, w EEB?%%)(VD—Vﬂ w2l

2
E(v) =D - w K(E%E)

n (16)

This yields trial values of D and Kn (which gives Cn via Eq. (4)),
The _fqur parameter values thus obtained are good starting approximations
for the direct non-linear fit of the experimental energiés to Eq. (6);2°
the linearity of Eq. (15) and (16) makes this approach particularly
Fstraightforward.29’3°

While Eq. (16) may be used only for =n # 2, Eq. (15) is also valid
for n = 2, since combining the derivatives of Eq. (7) shows that
—Bfg

E'(v) _ -1

CE"(v) wh § 2

ue
= ©O 1 E:g_ = l‘- ._——_-2- 1 -
Thus, even though vD(n—Z) = , lim (n+2)vD(n) A 1’ 5 . Manipulat

n>2
ing Eq. (4) and its derivatives, one obtains simple expressions yielding

.trial values of D and Cn:

2
. ) 2wl
b= 5w -(E) L (172)

and n+2)

K =E'(v) / [>-Ew)] (2“ (17b)
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where,as before, Cn is obtained from Knv While Eqs.. (17) are valid
for all n , in practice they are somewhat less-accurate and more dif-

ficult to use than is Eq. (16).3%!

III. Applications

A, Dissociation Limit and Potential Tail from Eigenvalues

of a Model Potential

The method is first applied to the exact eigenvalues of the pre~
viously mentioned (Sec. ITA) 24-level L.J.(12,6) potential:8

V(R) = 1 + 1/R'? -~ 2/R® (here D=1, A =6, C, = 2), A B-S plot of

6
the eigenvalues of any L.J.(12,6) potential has positive curvature

6 However, as discussed in Sec. II, consideration of the

everywhere.
deeper lévels by the present method is inappropriate, so the following
analysis deals only with the eleven levels lying less than 10% of the
well depth below the dissociation limit (ig,,D - E(v) < 0.1 De).19
Thoughout this section, energies are expressed in units of the well
depth (ie, set Dé = 1), length in units of the equilibrium distange
(de.. ,set Re = 1), and the zero of energy is set at the potential
minimum.

The calculated eigenvalues8

for the eleven highest levels were
smoothed by fitting them to a Sth order polynomial in v , in order to
obtain the derivatives on the left hand side of Eq. (15). Fig. 2 shows

- a plot pf this derivative ratio vs. v , compared with lines whose slopes
correspond (via Eq. (15)) to integer n = 5, 6, and 7.%%2 A least squares

fit of these derivative ratios to Eq. (15) yielded n = 6.29 and

= 23.27§2fixing n and W at these values, a subsequent fit of the

¥ D
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eigenvalues to Eq. (16) yielded D = 1.0 - l.3lx10_5(the correct value
is exactly 1.0) and Cn = 3.43. These estimates of the parameters were
then used as the initial trial values for a non~linear fitting of the
eleven energies to Eq. (6).%622% The parameters thus obtained were
D= 1.0 - 1.29x10 ", n = 6.30, C_ = 3.46 and v, = 23.25.

The above fitting procedure was then repeated several times while

the deeper levels were successively omitted. Levels in the interval

were included in a given fit; v, was fixed at 23 (the-

v. < v<VvV
— H

L — i

highest level) while v, was successively increased from 13 to 19.°%3
In Fig. 3 the resulting parameter values (solid curves) are plotted
against the energy of the lowest level included in a given fit, E(VL).

For a L.J.(12,6) potential n = 6 and the effective n at the
outer turning point (from Eq. (14)) is always less than six ; thus
the fact that four-parameter fits to Eq. (6)2° always yield n > 6
must be due to the first source of error discussed in Sec. IIB.

To obtain more accurate estimates of D, Cn and vy the above fitting

procedure was repeated with n fixed at n = 6. Levels v, to = 23

were fitted while v, was increased successively from 13 to 20,2932
yielding the parameter values joimed by the dashed curwes in Fig. 3.
This procedure was repeated with n fixed in turn at 5 and 7, yielding
the dotted curves in Fig. 3. Consideration of the different curves for

D suggests that their comparative convergence (flattening) is a test
of the true value of a .°* 1In general, the three-parameter fits with
n fixed at n yield meaningful values of Cﬁ and Yy and give better

estimates of D than do the four-parameter fits. '"Best' values of all

parameters are obtained from the right hand ends of the dashed curves in
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Fig. 3: D = 1.0 0.13x10™°, Ce = 2.01, and

value agrees well with the first order WKB value of 23.358.%°

v, = 23.353. This vy

As pointed out above, the dominant error affecting these L.J.(12,6)
results arises from the effect of the singularity at Rl(v). The values-
of n and Cn obtained from the four-parameter fits (and the C6
values from the three-parameter fits) are somewhat large; as expected,
the error diminishes as the deeper levels are successively dropped.

As discussed in Sec. IIB, the present method yields values of D,
n and Cn which provide "local" estimates of the potential over the
range of energies being fitted. Hence the outer tail of the potential
may be approximated by the results of a series of‘piecewise fits.
Furthermore, since all of the pieces should correspond to the same
value of D, holding D fixed at the "best'" value obtained above should
improve the accuracy of the derived potential, particularly for the

H

to Eq. (6),2%° with D held fixed at 1.0 and VT VL=_4, while vy

deeper segments. To explore this point, levels VL to v, were fitted

was successively decreased from 23 to 17. The resultant "local’ curves
are shown in Fig. 4 (only the segments corresponding to odd Yy have
been included); the points are the exact turning points, and in this
region are indistinguishable from the =-2/R® asymptotic tail. As
expected, the fitted segments are somewhat too deep. However the

"nesting' of the successive segments shows the decreasing error in the

fitted n and Cn as the dissociation limit is approached.??
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+
B. Dissociation Limit and Potential Tail of 012(33H0u)

The method is now applied to experimental data for the Baﬂéz
state of Clz, Douglas, Mgller and Stoicheff®® have reported accurate
vibrational energies of levels v = 6 to 31 of this state, the highest
observed level lying only a few cm._l below D . A B-S plot of their
data shows positive curvature above v = 11, and hence these higher
levels may be treated by the present method. In what follows, the zero
of energy is conveniently set at the lowest vibrational-rotational leveal
of the ground (xlzg> electronic state; results are reported in the con—
ventional spectroscopic energy and length units: cm_l and 2.37

As in the L.J.(12,6) case, the vibrational energies36 were re-
26529533

peatedly fitted to Eq. (6) (with four free parameters while

the deeper levels were successively omitted from consideration, yielding

%% that n =75

the values of n shown in Fig. 5. Theory indicates
for this state. The fact that the fitted n falls slightly below 5

(for w

L= 26 and 27) is probably due to the second type of error dis-

cussed in Sec. IIB. Over the region where the fitted n & 5, the eigen-
value distribution is probably dominated by the RfS term in the poten-
tial, In view of this, the data were refitted to Eq. (6) with n held

fixed at 5,28°29°83

to yield the gstimates of D, Cn and vy joined by
the dashed lines in Fig. 5. These (n=5) values of D are also compared
to those obtained from analogous fits with n fixed respectively at

4 and 6 (dotted curves). A comparison of the limiting (E(VL) - D)
behavior of the three D curves for fixed n supports the conclusion

that the highest five or six levels lie in the asymptotic n = 5 region.

Furthermore, comparison of the n =5 and '"n free" curves suggests that
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the former gives the more reliable estimate of D . This determination

of = 5 for this state (in agreement with theory) differs with the

9

conclusion of Byrne, Richards, and Horsley;3 the source of the error

in the earlier work is discussed in Ref. 30.

5

The present analysis yields D=20879.75(:0.10)cm’, C.=1.29(%0.03)x10

5
cm—l XS, and vD(n = 5) = 34.90(+0.03).%% This value of D 1is in agree-

ment with, but is considerably more precise than the experimenters' best

estimate®® of D = 20880(%2.0) cmul. The above (. compares well with

5
. ¥l 5 -1 XS .
the theoretical value of 1.44 x 107 ¢cm . Furthermore, the fitted
value of v implies that there exist at least three unobserved bound

levels above v = 31. Table I lists the predicted level energies, ob-
tained by substituting n = 5 and the above values! for the other three

constants into Eq. (6).
Table I. Calculated energies (in cmfl) for unobserved bound
3pt 37
Clz(B HOu) levels.

v 32 33 34

E(v) ‘! 20878.69 20879.49 20879.73

It is interesting to explore the question of the accuracy of the
D wvalue which would have been obtained by the present method if the data
for a few of the highest observed levels had not been available. In this
case the local potential for the highest remaining levels would not be

dominated by the asymptotic R (n=5) term, so general four-parameter

fits to Eq. (6) are necessary (cf. the three-parameter, n fixed at n
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fits described above). Experimental energies were repeatedly fitted to

Eq. (6), eight at a time, as the highest observed levels were succes-—

sively dropped from consideration2®’2%°33 Fip., 6 shows the values of D so

obtained plotted vs: the energy of the highest level included in a given
fit E(VH)Q!’2 It is noted that even if no levels had been observed

above v = 20 (which lies ca. 244 cm_l below D ), the present method

would have yielded D within 5.5 cm_ll In contrast, a linear B-S

extrapolation from v = 20 yields an error in D of ca. 69 em L.

To obtain an estimate of the tail of the Clz(BSﬂS;) potential

curve, the data were again fitted to Eq.(6)2° eight levels at a time, except

this time D was held fixed at the 'best" value of 20879.75c1_{11.“‘3 In Fig.7 the
segmented potential so obtained is compared to the RKR turning points

calculated by Todd, Richards, and Byrne.““

IV. Concluding Remarks

It has been shown that the distribution of vibrational levels near
the dissociation limit of a diatomic molecule is governed mainly by the
long-range attractive tail of the internuclear potential.l+5 A simple
approximate analytic expression has been derived for this distribution,
in terms of the dissociation limit D , the power n and coefficient
Cn of the effective local inverse-power potential, and an integration
constant v (which has physical significance if n = n). These quanti-
ties may be determined via a least-squares fit of experimental wvibrational
energies to this equation.28229233
This approach yields the binding energy of the highest observed

level with an error of at most a few percent, which is far superior to

the error often resulting from use of the customary B-S extrapolation
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procedures,3

It also leads to a determination of the power n and
coefficient Cn of the asymptotically dominating lowest power term in

. , +
the inverse-power expansion for the potential; the results for Clz(BgT['u

be’

accord well with theory."®

In addition, one obtains an estimate of the
outer branch of the potential over the range of the highest levels,
Aalbeit less accurate than an RKR potential.7 However the present method
is much less restrictive in. its data requirements, and hence may be ap-
plied in many situations where the RKR approach cannot. Here the only
restrictions on the input data are that the levels must lie near the
dissociation limit D , and that their B-S plot show positive curvature’’

A useful additional feature of the present method is its apility
(when n=n) to predict the energies of all unobserved levels lying above
the highest observed level.

The main alternative methods of obtaining estimates of D from
spectroscopic data are through use of the less accurate B-S extrapolation
(referred to earlier) or from the limiting curve of dissociation (LCD).®°"
In the latter case, D is deduced by extrapolation to zero J of plots
of the uppermost observed rotational levels vs. J(J+1), A large un-
certainty in D is introduced by the problem of determining the breaking-
off point Jmax for each v ; this is particularly important for the
vibrational levels predissociating at small J , closest to the intercept
of the LCD at D (gg.,see the case of Brz(B3ﬂdZ; discussed in Ref. 30).
It appears that the LCD method is less reliable than the present one.

Alternative spectroscopic approaches to the determination of n and
Cﬁ are the standard RKR procedure,and the predissociation method of

48

Bernstein. Difficulties in the use of the former are discussed in Ref. 30.
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The latter has been found to yield reasonable results for a number of
systems;38°48°49 however it suffers from the above-mentioned problem of
determining Jmaxa Furthermore, it presupposes an accurate value of D .
In general, therefore, n and Cﬁ values extracted from predissociation
data are expected to be less reliable than those obtainable by the present
-method.

In addition to spectroscopic methods, atomic beam scattering measure-~
ments yield n and Cﬁ values of roughly the same accuracy as those ob--
tained from the present method.®? These two techniques are essentially
complementary. The present approach is best applied to electronic states
of a strongly ("chemically") bound molecule with many vibrational levels,
where the profusion of electronic states arising from the interaction
of all but closed-shell atoms precludes the use of scattering measurements.
On the other hand, the shallow van der Waals potential wells normally
encountered with closed-shell atoms, ideal for study by the beam scat-
tering technique, do not support enough bound states to be treated by the
present method.

The new approach has been demonstrated by applying it to the exact
computed eigenvalues of a model L.J.(12,6) potential, and to the accurate
experimental vibrational energies of Clz(Baﬂéz). In a companion paper, it

. . + . )
is applied®’ to the ground (Xlzg) state of CIl,. and to the Baﬂgu states

2

of Br2 and 12 , and appears to be of quite general ptility.s1
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Appendix A: Birge~Sponer Plots for Different Potentials with

Identical Long-Range Tails

The basis of the present method is the conclusion (Eq. 4) that
near the dissociation limit D , the density of vibrational levels
d%%ﬁ)is determined almost solely by the nature of the outer (attractive)
branch of the potential. Thus, B-5 plots (scaled, when necessary by
A1l; see Eq. (4)) of the level spacings for different potentials with
identical long-range tails (but with arbitrarily different short-range
behavior) will be identical near the dissociation limit, provided
their abscissa (v) scales are shifted appropriately relative to one
another. This may be tested either by using exact (quantal) eigen=-
values for suitably chosen potentials, or, with little loss in accuracy,
by the use 6f WKB-approximated eigenvalues. The latter procedure has
been employed here. Reduced WKB integral tables are available for
L.J.(12,6) and exp(c,6) (oo = 12.0, 13.772 and 15.0) potentials.5?%2
The L.J.(12,6) potential considered in these comparisonsais that utilized
in Sec. IIIA; throughout the present Appendix, all energies and lengths
are scaled relative to its well depth and equilibrium distance, and the
reduced mass Y 1is assumed to be the same.
For an exp(o,6) potential with the same long-range R--'6 tail as
the model L.J.(12,6),°

DR ®

Ly .__ee _
€% =2 =TT -6/ (A1)

For any choice of De » Eq. (Al) defines the corresponding Re ; the

appropriate BZ value® is then obtained by multiplying the Bz(=10000;)
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for the model L.J.(12,6) potential® by DeRéz. The parameters of the

chosen exp(n,6) potentials are given in Table Al.

Table Al. Parameters of Exp(p,6) Potentials Having Same

Long—Range Tail as the Model L.J.(12,6).B

Case E C B
o 12.0 13.772 15.0
D 1.0 1.5 2.0
e
Re 1.0 0.953701 0.918386
BZ 10000.0 13643.20 16868.65

For L.J.(12,6) and exp(a,6) potentials with o = 12.0, 13.772,
and 15.0, the WKB integral tables®’®*?(based on a reduced form of Eq.
(1)) are presented as values of ¢ = (v+%)/v§; Vs, = —(D—E(v))/De

and 6 = (j+%)2/Bz. Thus®

D
vy = & &K (A2)
W ‘

Ignoring the Langer correction!® for rotationless levels (ig. using ¢

values for 0 = 0, rather than for j = 0),°° one may obtain dK/d¢

5% AG(v) values thus obtained, via

by direct numerical interpolation
Eq. (A2), yield curves B, C, D, and E in Fig. 8. The points on curve
D are the exact quantala vibrational spacings for this case,® AGV+% \

Case A refers to a purely attractive potential V(RD=D-2/R6; curve A is

generated by substituting Eq. (6) into Eq. (4), with n = 6 and
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Cy = 2.%% The abscissa scales have been shifted to make all vD's
coincide. The insert on Fig. 8 shows the five potentials of the same C6.
The convergence of the different curves in Fig. 8 as the dissocia-
tion limit is approached is considered good evidence of the practical
validity of the present method. Increases in reduced mass U and/or
the depth or breadth of the potentials (introducing more vibrational

levels) would merely stretch the ordinate and abscissa scales, and

shift the lower curves up towards curve A (which would remain un-

changed).
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Appendix B: Asymptotic Inverse-Power n for Atomic Interactions

This section summarizes rules for determining the limiting asympto-
tic power A in the internuclear interaction. It is based on the
references in footnotes 20, 41, 56, and 57, and is limited to first-
and second-order perturbation theory results. Magnetic (or.relativis-
tic) effects are ignored; this is reasonable for R 20 a.u. °% (and
levels with outer turning points at larger distances would not be
readily observed).

The n of the lowest order term in the inverse-power series ex-
pansion (Eq. 13) for the long-range internuclear potential is deter-
mined by the nature of the two atoms to which the molecular state
adiabatically dissociates. If the two atoms are charged, of course
n = 1; if one is charged and the other is in an electronic state with
a permanent dipole moment,®? @ = 2; if both atoms are uncharged and

® 3 = 3. Another

in electronic states with permanent dipole moments , °
case in which n = 3 occurs is in the interaction between two identi-
cal uncharged atoms in electronic states whose total angular momenta
differ by one (de., AL = 1); this interaction is a first-order dipole
resonancefeand unlike the effects mentioned above, has no classical
electrostatic analog. For interactions between a charged and a neutral

7%e?q
2

atom, n =4 and C4 = , where Ze dis the charge on the ion,

and o the polarizability of the neutral. The case n=4 can also arise in
the interaction of an atom with a permanent electric dipole moment,>?®
and a non S-state atom with a permanent quadrupole moment.

In general, pairs of (uncharged) non S-state atoms have a first-

order quadrupole-quadrupole interaction which corresponds to n = 5,
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41

and theoretical C. values are available for a wide range of systems.

5
Occasionally the 05 coefficient for a particular state is zero for
reasons of symmetry (eg., for the ground (XIZZ) state of the halogensge),
and in this case n = 6. For states which do not fall into any of the

above classifications, n = 6 (since all interacting species are

subject to the London induced dipole-induced dipble forces).
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Footnotes
R. T. Birge and H. Sponer, Phys. Rev. 28, 259 (1926).
R. T. Birge, Trans. Faraday Soc. 25, 707 (1929).

For a recent review see A. G. Gaydon, Dissociation Energies, 3rd

Edition, Chapman and Hall Ltd., London (1968).

G. Herzberg, Molecular Structure and Molecular Spectra: I. Spectra

of Diatomic Molecules, 2nd Edition, D. Van Nostrand Company, Inc.,

Toronto (1950).

1
Eégéziél is not

Note that while AG(v) is Herzberg's AGV, AG (vHs)
identical to the "observable" vibrational level spacing
R v+l
AGV+1 = [ AG(v) dv  (see p. 98 in Ref. 4).
3
v

a) H. Harrison and R. B. Bernstein, J. Chem. Phys. 38, 2135 (1963);

"b) Erratum 47, 1884 (1967).

See the review by E. A, Mason and L. Monchick, Advances in Chemical

Physics, 12, 329 (1967), Interscience-Wiley, New York.
The parameters of the L.J.(12,6) potential were chosen to allow

for 24 bound states. In the notation of Ref. 6, this corresponds

ZuDeRZ
to Bz =—Fz = 10000., where De is the well depth, and Re

the position of the potential minimum. Eigenvalues were calcu-
lated numerically and are accurate to 10_7 De' This was done using
a slightly modified form of the Cooley-Cashion program: J. W.
Cooley, Math Computation 15, 363 (1961); J. K. Cashion, J. Chem.
Phys. 39, 1872 (1963).

I. S. Gradshteyn and I. M. Ryzhdik, Tables of Integrals Series and

Products (8§ 3.251, page 295) Academic Press, New York (1963).

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,

U. S. Nat. Bur. Std. Appl. Math. Series 55. U. S. Dept. of
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120

13.

14,

15.

- values 'of the derivatives
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Commerce, Washington, D. C. (1964); also from Dover Publications
Inc.; New York (1965 ).

This is because a direct fit of experimental energies to Eq. (4)

- requires a prior numerical smoothing of the data to obtain accurate

dE(v)
dv :

It is interesting to note that for 1'% 4 (ion~induced dipole forces)
Eq. (6) is simply a quartic in v , and for n = 6 (induced dipole-

induced dipole, London dispersion forces) it is cubic.

“By ‘eomparing Eq. (1) for E(v) =D 'and E(v) at a slightly smaller

v 3 Wo C. Stwalley (private communication, 1969) independently

obtained a result for n = 6 which, upon generalization for any

‘n > 2y -may be cast into the useful form of Eq. (6). However, his
factor equivalent to the present Kn is slightly less general, and

" this approach (unlike the present one) cannot be applied to cases

with “n < 2 . While seeking a "natural" analytiec expression to

describe the vibrational spectrum of H C. L. Beckel (J. Chem.

2 2
Phys. 39, 90 (1963)) proposed empirical formulae somewhat similar
in form to Eq. (6).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. II

( §12.3), McGraw-Hill, New York (1953).

For pure inverse-power potentials with n > 2, there are a finite

number of levels within any finite neighborhood of the dissociation
limit, but there are an infinite number of discrete levels below it,
extending down to infinite binding energy. For potentials with

n < 2 there exists a lowest level bound by a finite energy, while

there are an infinite number of levels within any finite neighborhood



16.

i7.

18.

19.

20.

28:

of D . For n =2 the 1levels extend down to infinite binding
energy, and there are an infinite number of levels in any finite
neighborhood of D .

R. E. Langer, Phys. Rev. 51, 669 (937). The Langer correction

(ig., replacing j (G+1) by G+%92) would require replacing

. C - S

Eq. (@a) by: V(R) =D = 2o i mix' . For n =2 this just
g %ﬁ 4R 4

means that C, in Eq. () becomes (. - é*-), but for n # 2

2 2 /M

the integral arising from Eq. &} is no longer analytically solubie.
However, for realistic systems the Langer correction is fortunately
very small.

Within. the context of the present approach, potentials with exponen-
tial long-range tails {such as the Morse potential) correspond
qualitatively to inverse-power potentials with very large n .

he purely attractive exponential potential has both a discrete
lowest level and a finite number of bound states within any finite
neighborhood of D .
A linear. B-S plot for 1levels near the dissociation limit of a
potential will be considered as an indication that the potential
in the given region is effectively exponential in form. |

Care should be taken to avoid confusion between the well depth Deg
and D , the position of the dissociatién limit,

See the discussion of intermolecular forces in

a) Molecular Theory of Gases and Liquids by J. 0. Hirschfelder,

C. F. Curtiss and R. B Bird, John Wiley and Sons, New York
(1964),
b) J. 0. Hirschfelder and W, J. Meath, Advances in Chemical Physics,

XII, (Intermolecular Forces), 1 (1967) , Interscience, New York.
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21, Note that in the case where some of the dominant terms in Eq. (13)
are repulsive (dg.,their Cm £ 0), some of these weightiﬁg factors
wiil have differing signs, and the resulting value of ©n may then
lie outside the range of the m's of the contributing terms. If
the lowest inverse.power term is repulsive while the higher power
terms are attractive, this gives rise tc a potential maximum at
large R . This appears to be the case for the ‘Sﬁbg state of
I,: R. J. LeRoy, J. Chem. Phys. 5Z, 0000 (1970).

5°

22, In this context a potential is "well behaved” if it has no poten=
tial maximum and no non-adiabatic perturbation.

23, Of course both errors approach zero for levels approaching D .

24, a) See, e&g., the discussion by J. K. Cashion, J. Chem, Phys, 48,

9% (1968) ; sce also Appendix A.

b) A. 8. Dickinson, private communication (1968).

25, See Appendix B for a summary of the theoretical n values for
a wide variety of cases.

26, Non=linear least-squares regression computer programs for fitting
arbitrary analytic functions are available at most computing centers,
The present calculations used the University of Wisconsinm Computing
Center subroutine GASAUS for such fits.

27. Primes denote differentiation with respect to v ; gg.,
E'(v) = dE(v)/dv.

28. Parémeter values obtained from Egs. (15) and (16) should, in principle,
be just as reliable as those obtained from Eq. (6). However, the
former approach requires a prior smoothing of the data to obtain

accurate values of the derivatives ?” E'(v) and E¥(v), and in practice
, 2 B



29.

30.

31,

32,

33.

30

this introduces some error., Experience has shown that while trial
parameter values from Eqs. (15) and (16) are satisfactory, they are
measurably improved by four parameter fittings to Eq. (6). 28

In all of the results presented, an initial fit of the data to Eqgs.
(15) and (16) yielded trial parameter values which were used to
initiate the general non=-linear fit to Eq. (6).28°%0

R. J. LeRoy and R. B. Bernstein, University of Wisconsin Theoretical
Chemistry Iastitute report WIS-TCI=-369 (1969), to be published.

The report containms in an appendix Fortran listings of the programs
used for carrying out fits to Eq. (6}, (15), and (16).

This is mainly because of the problem of averaging the egtimates

of D and Kn obtained at different values of v , to yield a
mutually consistent set of parameters. It is jnteresting that

analagous to Eq. (17),

2
1!
n = - (v

) E' (WE"w) "
but because of the above problem this expression is less reliable
than is Eq. (15).

Since the derivatives are.obtained from the highest 11 energies
only, they cannot be accurate at the end points, so only the 9 points
shown on Fig. 2 are reliable.

Since the input data (level energies) are never completely ervor=
free, a given fit should always utilize at least one level more than
the number of free parameters being fitted, If there is significant
experimental uncertainty in the energies (ggp,more than a few percent

of the level spacings) a redundancy of more than one level may be

required to yield meaningful values of the parameters.
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35,

36.

37.

38.

39.

40,

31

ag
2.9

the experimental uncertainty introduces considerable imprecision

In the application of this method to the BSHO: state of 1

into the four=parameter fits, so that n could not be directly
determined within required accuracy of better than il. However,
comparison of the D curves yielded by three-parameter fits with

n fixed different trial values, strongly suggested that n =5,

D. E. Stogryn and J. O. Hirschfelder, J. Chem. Phys. 31, 1531 (19593,
These authors derived an analytic expression (their Eq. (89)) for
the exact first-order WKB value of vy (which omits the effect of the
the Langér correctionls), A more exact value of the numerical cor=
stant in their Eq. (92) is 1.6826.

A, E, Douglas, Chr., Kn., M¢gller and B, P, Stoicheff, Can. J. Phys.

41, 1174 (1963).

The experimental data for this system are for the most common

isotope 35’35012; all energies are expressed relative to the
v'" =0, J" = 0 level of its ground electronic state.

T. Y. Chang, Mol. Phys. 13, 487 (1967); see also the discussion in
Appendix B.

M. A. Byrne, W. G, Richards and J, A, Horsley, Mol. Phys, 12,

273 (1967).

In choosing these values it is assumed that the "hook" at the end
of the n =5 curves in Fig. 5 is significant, illugtrating the
decrease of the error term for levels farther into the asymptotic
(n = ) region. The indicated uncertainites (including the ervor
bars in Fig. 5) correspond to one standard error ip the fitted

parameters and are smaller than the probable error limits,
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42,

43,

by,

45,

46,

32

It has been shown by J. K. Knipp (Phys. Rev. 53, 734 (1938)) that
C5 coefficients may be expressed as a product of an angular factor
and I<r2> <r123>'}, the product of the expectation values for the
square of the electron radii in the unfilled valence shells on
interacting atoms A and B. Knipp presented values of the angular
factors and approximate expectation values for a few systems, and
T. Y. Chang (Rev. Mod. Phys. 39, 911 (1967)) extended these

results considerably. Recently C. F, Fischer (Can. J. Phys., 46,
2336 (1968)) has reported Hartree=Fock values of <r2> for all

shells of atoms from He to Rn.

The erratic nature of the curve in Fig. 6 is due to the influence

. of small errors in the experimental energies on the fitted values

of the parameters; the corresponding values of n , Cn , and vy
show similar behavior. Including more levels in each fit dampens
these oscillations;

Holding D fixed dampens the 'noise" due to experimental uncer-
tainty,“2 yielding a more reliable segmented potential,

J. A. G, Todd, W. G. Richards, and M. A. Byrne, Trans. Faraday

Soc. 63, 2081 (1967).

For a somewhat related discussion of the quasibound states, sece

A, S, Dickinson and R. B, Bernstein, Mol. Phys. (to be published).
While the present method is expected to give values of Cn

which are slightly small (see Sec. IIB), there is reason to suspect
that the theoretical C5 value Qsed for com}parismnl+1 may be some-

what too large. M., T. Marron (private communication, 1969) points

2
out that Fischer'sh1 values of '(r >“ are based on Hartree-Fock



47.

48,
49,

50.

51.

52.

53.

54.

33

wave functions which do not have correct asymptotic tails, and that

correcting for this may decrease <r2>- s and hence the theoretical
C5.

For a few systems, such as isotopic hydrogen and most hydrides, the
inverse~power long-range forces are relatively weak,so that the

B~S plot shows negative or zero curvature even for the very highest
levels.

R. B. Bernstein, Phys. Rev. Lett. 16, 385 (1966).

J. A, Horsley and W, G. Richards. J, Chim. Phys. 66, 41 (1969).

See, for example, H. Pauly and J. P, Toennies, Chapt. 3.1 (p. 227)

of Methods of Experimental Physics, L, Marton, Ed., Vol, 7 of Atomic

and Electron Physics; Atomic Interactions, Part A, Academic Press,
New York (1968).

Although all of the cases thus far considered correspond to

i =5 or 6, the present method should bhe even more successful for
systems with smaller T (eg., 0 = 4, for molecules which dis~
sociate to ion+neutral) because of the relatiyely higher density

of levels near D .

The present work utilized the corrected tables reported in Ref. 6b.
These are available as Document No. 9499 in the ADI Auxili;ry
Publications Project, Photoduplication Service, Library of Congress,
Washington, D. C. 20540,

Comparison of the ¢ values®’%? for 6 =0 and, say, 6 = 10'_4
shows that this introduces negligible error.

This was done by piecewise fitting of third-order polynomials in

¢ . Despite the rather large gaps between the tabulated points
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56.

57.

58. .

59.

.. the 0;( states of 0, and Cu

34

for large ¢ , this is expected to be fairly accurate since the

6*tailed

eigenvalue distribution for the highest levels of an R
potential is expected to be cubic in v (ig.yin ¢ ). 12

Although the exact VD is infinite for the pure R_6 attractive

.potential, there are a finite number of levels within any finite

interval about D .}° Hence the quantities (vD— v) and curve A

in Fig. 8 are significant in the semiclassical (WKB) approximation.
G. W. King and J. H. Van Vleck, Phys. Rev. 55, 1165 (1939).

H. Margenau, Rev. Mod. Phys. 11, 1 (1939).

This conclusion is partly based on Chang's conclusion®! that for

9 99 these effects do not dominate
the interaction until R > 60a.u.

This case is, however, relatively uncommon; Hirschfelder and

Meath?? point out that only an excited H atom can have a

permanent dipole moment.
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Legends for Figures

Exact integrand (solid curves) of Eq. (2) for three ievels of a
"standard" 24-level L.J.(12,6) potential.® The dashed segment
of curve near Rl is the approximate integrand

[E(w) - @ - 2/8%] 7% for v =120. The dashed vertital lines .

are the turning points ,where the exact integrand is singular.

E'(v)/E"(v) wvs. v for the highest levels of the 24-level
L.J.(12,6) potential..32 The broken lines have slopes cor-

responding to integer n = 5, 6, and 7 (see Eq. (15)).

Results of fitting Eq. (6) to the vibrational levels of the

24-level L.J.(12,6) potential.®’28°2® The points correspond to

fits of levels v, up to vy = 23. The broken horizontal lines
denote the exact quantities n =6, D = 1.0, and C6 = 2.0,
The "best" n = 6 estimate of vy is 23.353, in good agree-

ment with the value 23.358 generated from the analytic expres-

sion of Stogryn and Hirschfelder.?®®

Points joined by solid
lines correspond to four-parameter fits with =n being varied

freely, while the others correspond to three-parameter fits with

n held fixed at the indicated wvalues.

Piecewise potentials constructed from three-parameter fits (D
constrained at 1.0) of the L.J.(12,6) vibrational energiesa to
Eq. (6).2%22° (O exact turning points for the specified levels;
—— segments obtained from fits;— —— exact asymptotic R

potential tail.
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Fig. 6.

Fig. 7.

Fig. 8.

36

Results of fitting Eq. (6)25°2% to the experimental vibrational

+ .
energies of Clz(Banou),“’37 The points correspond to fits of

levels v, up to vy = 31. The broken vertical line is the
best estimate obtained for D . Points joined by solid curves

correspond to four-parameter fits with n varied freely, while
the others correspond to three-parameter fits with n  held

fixed at the indicated wvalues.

D. estimates obtained by fitting Eq. (6) to the energies of

levels v to VH,26’29 where v, ~ v.= 7 and v._ is wvaried,.

H L H
The vertical and horizontal broken lines denote the best

present estimate of D .

Piecewise potentials constructed from three-parameter fits
(with the constraint D = 20879.75 cm_l) of the experimental
vibrational energies36 of 1Clz(B3H0:) to Eq. (6).28223

® RKR turning points for the specified levels;™*"

— segments obtained from fits.

Birge-Sponer plots for various (L.J.(12,6), EXp(d,G) and pure
R_6) potentials with the same long-range tail; fhe insert
shows the corresponding potential curves. A: pure R_6,

V@R) = D—C6/R6; B, C, and E: EXp(d,6), see Table II;

D: '"model" L.J.(12,6).% All B-S curves except A were gener-

ated from Eq. (A2) using WKB integral tables;®°%2 the points

8 and

are exact quantal level spacings for the L.J.(12,6) case,
they confirm the accuracy of the WKB approximation.® Curve A was

obtained on substituting Eq. (6) into Eq. (4).%°
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